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Bayesian statistical methods are becoming ever more popular in applied and fundamental research. In this
study a gentle introduction to Bayesian analysis is provided. It is shown under what circumstances it is attrac-
tive to use Bayesian estimation, and how to interpret properly the results. First, the ingredients underlying
Bayesian methods are introduced using a simplified example. Thereafter, the advantages and pitfalls of the
specification of prior knowledge are discussed. To illustrate Bayesian methods explained in this study, in a
second example a series of studies that examine the theoretical framework of dynamic interactionism are con-
sidered. In the Discussion the advantages and disadvantages of using Bayesian statistics are reviewed, and
guidelines on how to report on Bayesian statistics are provided.

… it is clear that it is not possible to think about
learning from experience and acting on it without
coming to terms with Bayes’ theorem.

Jerome Cornfield (in De Finetti, 1974a)

In this study, we provide a gentle introduction to
Bayesian analysis and the Bayesian terminology
without the use of formulas. We show why it is
attractive to adopt a Bayesian perspective and, more
practically, how to estimate a model from a Bayesian
perspective using background knowledge in the
actual data analysis and how to interpret the results.

Many developmental researchers might never have
heard of Bayesian statistics, or if they have, they
most likely have never used it for their own data
analysis. However, Bayesian statistics is becoming
more common in social and behavioral science
research. As stated by Kruschke (2011a), in a special
issue of Perspectives on Psychological Science:

whereas the 20th century was dominated by
NHST [null hypothesis significance testing], the
21st century is becoming Bayesian. (p. 272)

Bayesian methods are also slowly becoming used
in developmental research. For example, a number of
Bayesian articles have been published in Child Devel-
opment (n = 5), Developmental Psychology (n = 7), and
Development and Psychopathology (n = 5) in the last
5 years (e.g., Meeus, Van de Schoot, Keijsers,
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Schwartz, & Branje, 2010; Rowe, Raudenbush, &
Goldin-Meadow, 2012). The increase in Bayesian
applications is not just taking place in developmental
psychology but also in psychology in general. This
increase is specifically due to the availability of
Bayesian computational methods in popular soft-
ware packages such as Amos (Arbuckle, 2006),
Mplus v6 (Muth�en & Muth�en, 1998–2012; for the
Bayesian methods in Mplus see Kaplan & Depaoli,
2012; Muth�en & Asparouhov, 2012), WinBUGS
(Lunn, Thomas, Best, & Spiegelhalter, 2000), and a
large number of packages within the R statistical
computing environment (Albert, 2009).

Of specific concern to substantive researchers,
the Bayesian paradigm offers a very different view
of hypothesis testing (e.g., Kaplan & Depaoli,
2012, 2013; Walker, Gustafson, & Frimer, 2007;
Zhang, Hamagami, Wang, Grimm, & Nesselroade,
2007). Specifically, Bayesian approaches allow
researchers to incorporate background knowledge
into their analyses instead of testing essentially the
same null hypothesis over and over again, ignor-
ing the lessons of previous studies. In contrast, sta-
tistical methods based on the frequentist (classical)
paradigm (i.e., the default approach in most soft-
ware) often involve testing the null hypothesis. In
plain terms, the null hypothesis states that “noth-
ing is going on.” This hypothesis might be a bad
starting point because, based on previous research,
it is almost always expected that “something is
going on.” Replication is an important and indis-
pensible tool in psychology in general (Asendorpf
et al., 2013), and Bayesian methods fit within this
framework because background knowledge is inte-
grated into the statistical model. As a result, the
plausibility of previous research findings can be
evaluated in relation to new data, which makes
the proposed method an interesting tool for confir-
matory strategies.

The organization of this study is as follows: First,
we discuss probability in the frequentist and Bayes-
ian framework, followed by a description, in general
terms, of the essential ingredients of a Bayesian
analysis using a simple example. To illustrate Bayes-
ian inference, we reanalyze a series of studies on the
theoretical framework of dynamic interactionism
where individuals are believed to develop through a
dynamic and reciprocal transaction between person-
ality and the environment. Thereby, we apply the
Bayesian approach to a structural equation model-
ing (SEM) framework within an area of develop-
mental psychology where theory building and
replication play a strong role. We conclude with a
discussion of the advantages of adopting a Bayesian

point of view in the context of developmental
research. In the online supporting information
appendices we provide an introduction to the com-
putational machinery of Bayesian statistics, and we
provide annotated syntax for running Bayesian
analysis using Mplus, WinBugs, and Amos in our
online supporting information appendices.

Probability

Most researchers recognize the important role that
statistical analyses play in addressing research
questions. However, not all researchers are aware
of the theories of probability that underlie model
estimation, as well as the practical differences
between these theories. These two theories are
referred to as the frequentist paradigm and the subjec-
tive probability paradigm.

Conventional approaches to developmental
research derive from the frequentist paradigm of
statistics, advocated mainly by R. A. Fisher, Jerzy
Neyman, and Egon Pearson. This paradigm associ-
ates probability with long-run frequency. The
canonical example of long-run frequency is the
notion of an infinite coin toss. A sample space of
possible outcomes (heads and tails) is enumerated,
and probability is the proportion of the outcome
(say heads) over the number of coin tosses.

The Bayesian paradigm, in contrast, interprets
probability as the subjective experience of uncer-
tainty (De Finetti, 1974b). Bayes’ theorem is a
model for learning from data, as suggested in the
Cornfield quote at the beginning of this study. In
this paradigm, the classic example of the subjective
experience of uncertainty is the notion of placing a
bet. Here, unlike with the frequentist paradigm,
there is no notion of infinitely repeating an event of
interest. Rather, placing a bet—for example, on a
baseball game or horse race—involves using as
much prior information as possible as well as per-
sonal judgment. Once the outcome is revealed, then
prior information is updated. This is the model of
learning from experience (data) that is the essence
of the Cornfield quote at the beginning of this
study. Table 1 provides an overview of similarities
and differences between frequentist and Bayesian
statistics.

The goal of statistics is to use the data to say
something about the population. In estimating, for
example, the mean of some variable in a popula-
tion, the mean of the sample data is a “statistic”
(i.e., estimated mean) and the unknown population
mean is the actual parameter of interest. Similarly,
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the regression coefficients from a regression analy-
sis remain unknown parameters estimated from
data. We refer to means, regression coefficients,
residual variances, and so on as unknown parame-
ters in a model. Using software like SPSS, Amos, or
Mplus, these unknown parameters can be esti-
mated. One can choose the type of estimator for the
computation, for example, maximum likelihood
(ML) estimation or Bayesian estimation.

The key difference between Bayesian statistical
inference and frequentist (e.g., ML estimation) sta-
tistical methods concerns the nature of the
unknown parameters. In the frequentist framework,
a parameter of interest is assumed to be unknown,
but fixed. That is, it is assumed that in the popula-
tion there is only one true population parameter,
for example, one true mean or one true regression
coefficient. In the Bayesian view of subjective prob-
ability, all unknown parameters are treated as
uncertain and therefore should be described by a
probability distribution.

The Ingredients of Bayesian Statistics

There are three essential ingredients underlying
Bayesian statistics first described by T. Bayes in
1774 (Bayes & Price, 1763; Stigler, 1986). Briefly,
these ingredients can be described as follows (these
will be explained in more detail in the following
sections).

The first ingredient is the background knowl-
edge on the parameters of the model being tested.

This first ingredient refers to all knowledge avail-
able before seeing the data and is captured in the
so-called prior distribution, for example, a normal
distribution. The variance of this prior distribution
reflects our level of uncertainty about the popula-
tion value of the parameter of interest: The larger
the variance, the more uncertain we are. The prior
variance is expressed as precision, which is simply
the inverse of the variance. The smaller the prior
variance, the higher the precision, and the more
confident one is that the prior mean reflects the
population mean. In this study we will vary the
specification of the prior distribution to evaluate
its influence on the final results.

The second ingredient is the information in the
data themselves. It is the observed evidence
expressed in terms of the likelihood function of the
data given the parameters. In other words, the like-
lihood function asks:

Given a set of parameters, such as the mean
and/or the variance, what is the likelihood or
probability of the data in hand?

The third ingredient is based on combining the
first two ingredients, which is called posterior infer-
ence. Both (1) and (2) are combined via Bayes’ theo-
rem (described in more detail in the online Appendix
S1) and are summarized by the so-called posterior
distribution, which is a compromise of the prior
knowledge and the observed evidence. The posterior
distribution reflects one’s updated knowledge, bal-
ancing prior knowledge with observed data.

Table 1
Overview of the Similarities and Differences Between Frequentist and Bayesian Statistics

Frequentist statistics Bayesian statistics

Definition of the p value The probability of observing
the same or more extreme
data assuming that the null
hypothesis is true in the population

The probability of the (null) hypothesis

Large samples needed? Usually, when normal theory-based
methods are used

Not necessarily

Inclusion of prior
knowledge possible?

No Yes

Nature of the parameters
in the model

Unknown but fixed Unknown and therefore random

Population parameter One true value A distribution of values reflecting uncertainty
Uncertainty is defined by The sampling distribution based on

the idea of infinite repeated sampling
Probability distribution for the population parameter

Estimated intervals Confidence interval: Over an infinity
of samples taken from the population,
95% of these contain the true population value

Credibility interval: A 95% probability that the
population value is within the limits of the
interval
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These three ingredients constitute Bayes’ theorem,
which states, in words, that our updated under-
standing of parameters of interest given our current
data depends on our prior knowledge about the
parameters of interest weighted by the current
evidence given those parameters of interest. In online
Appendix S1 we elaborate on the theorem. In what
follows, we will explain Bayes’ theorem and its three
ingredients in detail.

Prior Knowledge

Why Define Prior Knowledge?

The key epistemological reason concerns our view
that progress in science generally comes about by
learning from previous research findings and
incorporating information from these research
findings into our present studies. Often informa-
tion gleaned from previous research is incorpo-
rated into our choice of designs, variables to be
measured, or conceptual diagrams to be drawn.
With the Bayesian methodology our prior beliefs
are made explicit, and are moderated by the
actual data in hand. (Kaplan & Depaoli, 2013,
p. 412)

How to Define Prior Knowledge?

The data we have in our hands moderate our
prior beliefs regarding the parameters and thus lead
to updated beliefs. But how do we specify priors?
The choice of a prior is based on how much infor-
mation we believe we have prior to the data collec-
tion and how accurate we believe that information
to be. There are roughly two scenarios. First, in
some cases we may not be in possession of enough
prior information to aid in drawing posterior infer-
ences. From a Bayesian point of view, this lack of
information is still important to consider and incor-
porate into our statistical specifications.

In other words, it is equally important to quan-
tify our ignorance as it is to quantify our cumu-
lative understanding of a problem at hand.
(Kaplan & Depaoli, 2013, p. 412)

Second, in some cases we may have considerable
prior information regarding the value of a parame-
ter and our sense of the accuracy around that value.
For example, after decades of research on the rela-
tion between, say, parent socioeconomic status and
student achievement, we may, with a bit of effort,

be able to provide a fairly accurate prior distribu-
tion on the parameter that measures that relation.
Prior information can also be obtained from meta-
analyses and also previous waves of surveys. These
sources of information regarding priors are “objec-
tive” in the sense that others can verify the source
of the prior information. This should not be con-
fused with the notion of “objective priors,” which
constitute pure ignorance of background knowl-
edge. Often the so-called uniform distribution is used
to express an objective prior. For some subjective
Bayesians, priors can come from any source: objec-
tive or otherwise. The issue just described is
referred to as the “elicitation problem” and has
been nicely discussed in O’Hagan et al. (2006; see
also Rietbergen, Klugkist, Janssen, Moons, & Hoijt-
ink, 2011; Van Wesel, 2011). If one is unsure about
the prior distribution, a sensitivity analysis is rec-
ommended (e.g., Gelman, Carlin, Stern, & Rubin,
2004). In such an analysis, the results of different
prior specifications are compared to inspect the
influence of the prior. We will demonstrate sensitiv-
ity analyses in our examples.

An Example

Let us use a very simple example to introduce
the prior specification. We will only estimate two
parameters: the mean and variance of reading
skills, for example, measured at entry to kindergar-
ten for children in a state-funded prekindergarten
program. To introduce the Bayesian methodology,
we will first focus on this extremely simple case,
and only thereafter will we consider a more com-
plex (and often more realistic) example. In online
Appendices S2–S4 we provide the syntax for ana-
lyzing this example using Mplus, WinBugs, and
Amos.

The prior reflects our knowledge about the
mean reading skills score before observing the cur-
rent data. Different priors can be constructed
reflecting different types of prior knowledge.
Throughout the study we will use different priors
with different levels of subjectivity to illustrate the
effects of using background knowledge. In the sec-
tion covering our real-life example, we base our
prior specification on previous research results, but
in the current section we discuss several hypotheti-
cal prior specifications. In Figure 1, six different
distributions of possible reading skills scores are
displayed representing degrees of prior knowledge.
These distributions could reflect expert knowledge
and/or results from previous similar research stud-
ies or meta-analyses.
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Noninformative Prior Distributions

In Figure 1a, it is assumed that we do not know
anything about mean reading skills score and every
value of the mean reading skills score in our data
between minus infinity and plus infinity is equally
likely. Such a distribution is often referred to as a
noninformative prior distribution.

A frequentist analysis of the problem would
ignore our accumulated knowledge and let the data
speak for themselves—as if there has never been
any prior research on reading skills. However, it
could be reasonably argued that empirical psychol-
ogy has accumulated a considerable amount of
empirical information about the distribution of
reading skills scores in the population.

Informative Prior Distributions

From a Bayesian perspective, it seems natural to
incorporate what has been learned so far into our
analysis. This implies that we specify that the mean
of reading skills mean has a specific distribution. The
parameters of the prior distribution are referred to as
hyperparameters. If for the mean reading score a nor-
mal distribution is specified for the prior distribution,
the hyperparameters are the prior mean and the
prior precision. Thus, based on previous research
one can specify the expected prior mean. If reading
skills are assessed by a standardized test with a mean
of 100, we hypothesize that reading skills scores close
to 100 are more likely to occur in our data than val-
ues further away from 100, but every value in the

(A) 

(B) 

(C) 

(D) 

(E) 

(F) 

Figure 1. A priori beliefs about the distribution of reading skills scores in the population.

846 van de Schoot et al.



entire range between minus and plus infinity is still
allowed.

Also, the prior precision needs to be specified,
which reflects the certainty or uncertainty about the
prior mean. The more certain we are, the smaller we
can specify the prior variance and, as such, the preci-
sion of our prior will increase. Such a prior distribu-
tion encodes our existing knowledge and is referred
to as a subjective or informative prior distribution. If a
low precision is specified, such as Prior 2 in Fig-
ure 1b, it is often referred to as a low-informative
prior distribution. Note that it is the prior variance
of the prior distribution we are considering here and
not the variance of the mean of the reading skill
score.

One could question how realistic Priors 1 and 2
in Figures 1a and 1b are, if a reading skills score is
the variable of interest. What is a negative reading
skills score? And can reading skills result in any
positive score? To assess reading skills, a reading
test could be used. What if we use a reading test
where the minimum possible score is 40 and the
maximum possible score is 180? When using such a
test, Priors 1 and 2 are not really sensible. In Fig-
ure 1c, a third prior distribution is specified where
values outside the range 40–180 are not allowed
and within this range obtaining every reading skills
score is equally likely.

Perhaps we can include even more information
in our prior distribution, with the goal to increase
precision and therefore contribute to more accurate
estimates. As said before, we assume that our data
are obtained from a randomly selected sample from
the general population. In that case we might
expect a mean of reading skills scores that is close
to 100 to be more probable than extremely low or
high scores. In Figure 1d, a prior distribution is dis-
played that represents this expectation. Figure 1e
shows that we can increase the precision of our
prior distribution by increasing its prior variance.

In Figure 1f, a prior distribution is specified
where a very low score of reading skills is expected
and we are very certain about obtaining such a
mean score in our data. This is reflected by a prior
distribution with high precision, that is, a small
prior variance. If we sample from the general popu-
lation, such a prior distribution would be highly
unlikely to be supported by the data and, in this
case, would be a misspecified prior. If, however,
we have specified inclusion criteria for our sample,
for example, only children with reading skills scores
lower than 80 are included because this is the target
group, then Prior 6 is correctly specified and Prior 5
would be misspecified.

To summarize, the prior reflects our knowledge
about the parameters of our model before observing
the current data. If one does not want to specify
any prior knowledge, then noninformative priors
can be specified and as a result, the final results
will not be influenced by the specification of the
prior. In the Bayesian literature, this approach to
using noninformative priors is referred to as
objective Bayesian statistics (Press, 2003) because
only the data determine the posterior results. Using
the objective Bayesian method, one can still benefit
from using Bayesian statistics as will be explained
throughout the study.

If a low-informative prior is specified, the results
are hardly influenced by the specification of the
prior, particularly for large samples. The more prior
information is added, the more subjective it
becomes. Subjective priors are beneficial because: (a)
findings from previous research can be incorpo-
rated into the analyses and (b) Bayesian credible
intervals will be smaller. Both benefits will be dis-
cussed more thoroughly in the section where we
discuss our posterior results. Note that the term
subjective has been a source of controversy between
Bayesians and frequentists. We prefer the term
informative and argue that the use of any kind of
prior be warranted by appealing to empirical evi-
dence. However, for this study, we stay with the
term subjective because it is more commonly used in
the applied and theoretical literature.

Note that for each and every parameter in the
model, a prior distribution needs to be specified. As
we have specified a prior distribution for the mean
of reading skills scores we also have to specify a
prior distribution for the variance/standard devia-
tion of reading skills. This is because for Bayesian
statistics, we assume a distribution for each and
every parameter including (co)variances. As we
might have less prior expectations about the vari-
ance of reading skills, we might want to specify a
low-informative prior distribution. If we specify the
prior for the (residual) variance term in such a way
that it can only obtain positive values, the obtained
posterior distribution can never have negative val-
ues, such as a negative (residual) variance.

Observed Evidence

After specifying the prior distribution for all
parameters in the model, one can begin analyzing
the actual data. Let us say we have information on
the reading skills scores for 20 children. We used
the software BIEMS (Mulder, Hoijtink, & de Leeuw,
2012) for generating an exact data set where the
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mean and standard deviation of reading skills
scores were manually specified. The second compo-
nent of Bayesian analysis is the observed evidence
for our parameters in the data (i.e., the sample
mean and variance of the reading skills scores).
This information is summarized by the likelihood
function containing the information about the
parameters given the data set (i.e., akin to a histo-
gram of possible values). The likelihood is a func-
tion reflecting what the most likely values are for
the unknown parameters, given the data. Note that
the likelihood function is also obtained when non-
Bayesian analyses are conducted using ML estima-
tion. In our hypothetical example, the sample mean
appears to be 102. So, given the data, a reading
skills score of 102 is the most likely value of the
population mean; that is, the likelihood function
achieves its maximum for this value.

Posterior Distribution

With the prior distribution and current data in
hand, these are then combined via Bayes’ theorem
to form the so-called posterior distribution. Specifi-
cally, in this case, Bayes’ theorem states that our
prior knowledge is updated by the current data to
yield updated knowledge in the form of the poster-
ior distribution. That is, we can use our prior infor-
mation in estimating the population mean,
variance, and other aspects of the distribution for
this sample.

In most cases, obtaining the posterior distribu-
tion is done by simulation, using the so-called Mar-
kov chain Monte Carlo (MCMC) methods. The
general idea of MCMC is that instead of attempting
to analytically solve for the point estimates, like
with ML estimation, an iterative procedure to esti-
mate the parameters. For a more detailed introduc-
tion, see Kruschke (2011b, 2013), and for a more
technical introduction, see Lynch (2007) or Gelman
et al. (2004). See online Appendix S1 for a brief
introduction.

The Posterior Distribution in the Example

The graphs in Figure 2 demonstrate how the
prior information and the information in the data
are combined in the posterior distribution. The
more information is specified in the prior distribu-
tion, the smaller the posterior distribution of read-
ing skills becomes. As long as the prior mean is
uninformative (see Figure 2a), the result obtained
for the mean with ML estimation and the posterior
mean will always be approximately similar. If an

informative prior is specified, the posterior mean is
only similar to the ML mean if the prior mean is
(relatively) similar to the ML estimate (see Fig-
ures 2b to 2e). If the prior mean is different from
the ML mean (Prior 6), the posterior mean will shift
toward the prior (see Figure 2f).

The precision of the prior distribution for the
reading skills scores influences the posterior
distribution. If a noninformative prior is specified,
the variance of the posterior distribution is not
influenced (see Figure 2a). The more certain one is
about the prior, the smaller the variance, and hence
more peaked the posterior will be (cf. Figures 2d
and 2e).

Posterior Probability Intervals (PPIs)

Let us now take a closer look at the actual
parameter estimates. We analyzed our data set with
Mplus, Amos, and WinBUGS. Not all prior specifi-
cations are available in each software package; this
has been indicated in Table 2 by using subscripts.
In Mplus, the default prior distributions for means
and regression coefficients are normal distributions
with a prior mean of zero and an infinitive large
prior variance, that is, low precision (see Figure 1b).
If the prior precision of a specific parameter is set
low enough, then the prior in Figure 1a will be
approximated. The other prior specifications in
Figure 1 are not available in Mplus. In Amos, how-
ever, one can specify a uniform prior, like in
Figure 1a, but also normal distributions, like in Fig-
ure 1b, and a uniform distribution using the bound-
aries of the underlying scale, like in Figure 1c. If
prior distributions of Figures 1d to 1f are of inter-
est, one needs to switch to WinBUGS. We assumed
no prior information for the variance of reading
skills scores and we used the default settings in
Amos and Mplus, but in WinBUGS we used a
low-informative gamma distribution.

In the table, the posterior mean reading skills
score and the PPIs are displayed for the six differ-
ent types of prior specifications for our hypotheti-
cal example. Recall that the frequentist confidence
interval is based on the assumption of a very
large number of repeated samples from the popu-
lation that are characterized by a fixed and
unknown parameter. For any given sample, we
can obtain the sample mean and compute, for
example, a 95% confidence interval. The correct
frequentist interpretation is that 95% of these con-
fidence intervals capture the true parameter under
the null hypothesis. Unfortunately, results of the
frequentist paradigm are often misunderstood (see
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Gigerenzer, 2004). For example, the frequentist-
based 95% confidence interval is often interpreted
as meaning that there is a 95% chance that a
parameter of interest lies between an upper and
lower limit, whereas the correct interpretation is
that 95 of 100 replications of exactly the same
experiment capture the fixed but unknown para-
meter, assuming the alternative hypothesis about
that parameter is true.

The Bayesian counterpart of the frequentist confi-
dence interval is the PPI, also referred to as the
credibility interval. The PPI is the 95% probability
that in the population the parameter lies between
the two values. Note, however, that the PPI and the
confidence interval may numerically be similar and

might serve related inferential goals, but they are
not mathematical equivalent and conceptually quite
different. We argue that the PPI is easier to commu-
nicate because it is actually the probability that a
certain parameter lies between two numbers, which
is not the definition of a classical confidence interval
(see also Table 1).

Posterior Results of the Example

The posterior results are influenced by the prior
specification. The higher the prior precession, the
smaller the posterior variance and the more certain
one can be about the results. Let us examine this
relation using our example.

(A) 

(B) 

(C) 

(D) 

(E) 

(F) 

Figure 2. The likelihood function and posterior distributions for six different specifications of the prior distribution.
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When the prior in Figure 2a is used, the poster-
ior distribution is hardly influenced by the prior
distribution. The estimates for the mean reading
skills score obtained from the likelihood function
(i.e., the ML results) and posterior result are close
to each other (see the first two rows of Table 2). If
a normal distribution for the prior is used, as in
Figure 2b, the 95% PPI is only influenced when a
high-precision prior is specified; see Table 2 and
compare the results of Priors 2a, 2b, and 2c, where
only for Prior 2c the resulting PPI is smaller com-
pared to the other priors we discussed so far. This
makes sense because for the latter prior we speci-
fied a highly informative distribution; that is, the
variance of the prior distribution is quite small
reflecting strong prior beliefs. If the prior of
Figure 2c is used, the results are similar to the ML
results. When the prior of Figure 2c is combined
with specifying a normal distribution, the PPI
decreases again. If we increase the prior precision
of the mean even further, for example, for Prior 5,
the PPI decreases even more. If the prior mean is
misspecified, like in Figure 2f, the posterior mean
will be affected; see the results in Table 2 of Priors
6a and 6b. The difference between Priors 6a and 6b
reflects the degree of certainty we have about the
prior mean. For Prior 6a we are rather sure the
mean was 80, which is reflected by a high prior
precision. For Prior 6b we are less sure, and we
used a low prior precision. The posterior mean of
Prior 6b is therefore closer to the ML estimate when
compared to the posterior mean of Prior 6a.

To summarize, the more prior information is
added to the model, the smaller the 95% PPIs
becomes, which is a nice feature of the Bayesian
methodology. That is, after confronting the prior
knowledge with the data one can be more certain

about the obtained results when compared to
frequentist method. This way, science can be truly
accumulative. However, when the prior is misspeci-
fied, the posterior results are affected because the
posterior results are always a compromise between
the prior distribution and the likelihood function of
the data.

An Empirical Example

To illustrate the Bayesian methods explained in
this study, we consider a series of articles that
study the theoretical framework of dynamic interac-
tionism where individuals are believed to develop
through a dynamic and reciprocal transaction
between personality and the environment (e.g.,
quality of social relationships; Caspi, 1998). The
main aim of the examined research program was to
study the reciprocal associations between personal-
ity and relationships over time. In the case of extra-
version, for example, an extraverted adolescent
might seek out a peer group where extraversion is
valued and reinforced, and as such becomes more
extraverted.

A theory that explains environmental effects on
personality is the social investment theory (Roberts,
Wood, & Smith, 2005). This theory predicts that the
successful fulfillment of societal roles (in work, rela-
tionships, health) leads to strengthening of those per-
sonality dimensions that are relevant for this
fulfillment. For this study, the social investment the-
ory is important because it can be hypothesized that
effects fulfilling societal roles on personality are stron-
ger in emerging adulthood when these roles are more
central than in earlier phases of adolescence. At the
time of the first article in our series (Asendorpf &
Wilpers, 1998), however, the predictions of social

Table 2
Posterior Results Obtained With Mplus, AMOS, or WINBUGS (n = 20)

Prior type Prior precision used (prior mean was always 100) Posterior mean reading skills score 95% CI/PPI

ML 102.00 94.42–109.57
Prior 1AW 101.99 94.35–109.62
Prior 2aM AW Large variance, i.e., Var. = 100 101.99 94.40–109.42
Prior 2bM AW Medium variance, i.e., Var. = 10 101.99 94.89–109.07
Prior 2 cM AW Small variance, i.e., Var. = 1 102.00 100.12–103.87
Prior 3AW 102.03 94.22–109.71
Prior 4W Medium variance, i.e., Var. = 10 102.00 97.76–106.80
Prior 5W Small variance, i.e., Var. = 1 102.00 100.20–103.90
Prior 6aW Large variance, i.e., Var. = 100 99.37 92.47–106.10
Prior 6bW Medium variance, i.e., Var. = 10 86.56 80.17–92.47

Note. CI = confidence interval; PPI = posterior probability interval; ML = maximum likelihood results; SD = standard deviation;
M = posterior mean obtained using Mplus; A = posterior mean obtained using Amos; W = posterior mean obtained using WinBUGS.
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investment theory were not yet published. Instead,
the authors started with a theoretical notion by McC-
rae and Costa (1996) that personality influences
would be more important in predicting social relation-
ships than vice versa. At the time, however, the idea
did not yet have much support because:

empirical evidence on the relative strength of
personality effects on relationships and vice
versa is surprisingly limited. (p. 1532)

Asendorpf and Wilpers (1998) investigated for
the first time personality and relationships over
time in a sample of young students (N = 132) after
their transition to university. The main conclusion
of their analyses was that personality influenced
change in social relationships, but not vice versa.
Neyer and Asendorpf (2001) studied personality–
relationship transactions using now a large repre-
sentative sample of young adults from all over
Germany (age between 18 and 30 years; N = 489).
Based on the previous results, Neyer and Ase-
ndorpf

hypothesized that personality effects would have
a clear superiority over relationships effects.
(p. 1193)

Consistent with Asendorpf and Wilpers (1998),
Neyer and Asendorpf (2001) concluded that once
initial correlations were controlled, personality traits
predicted change in various aspects of social rela-
tionships, whereas effects of antecedent relation-
ships on personality were rare and restricted to
very specific relationships with one’s preschool
children (p. 1200). Asendorpf and van Aken (2003)
continued working on studies into personality–
relationship transaction, now on 12-year-olds who
were followed up until age 17 (N = 174), and tried
to replicate key findings of these earlier studies.
Asendorpf and van Aken confirmed previous find-
ings and concluded that the stronger effect was an
extraversion effect on perceived support from peers.
This result replicates, once more, similar findings in
adulthood.

Sturaro, Denissen, van Aken, and Asendorpf
(2010), once again, investigated the personality–rela-
tionship transaction model. The main goal of the
2010 study was to replicate the personality–relation-
ship transaction results in an older sample (17–
23 years) compared to the study of Asendorpf and
van Aken (2003; 12–17 years). Sturaro et al. found
some contradictory results compared to the previ-
ously described studies.

[The five-factor theory] predicts significant paths
from personality to change in social relationship
quality, whereas it does not predict social rela-
tionship quality to have an impact on personality
change. Contrary to our expectation, however,
personality did not predict changes in relation-
ship quality. (p. 8)

In conclusion, the four articles described above
clearly illustrate how theory building works in
daily practice. By using the quotes from these
articles we have seen that researchers do have
prior knowledge in their Introduction and Discus-
sion sections. However, all these articles ignored
this prior knowledge because they were based on
frequentist statistics that test the null hypothesis
that parameters are equal to zero. Using Bayesian
statistics, we will include prior knowledge in the
analysis by specifying a relevant prior distribu-
tion.

Method

Description of the Neyer and Asendorpf (2001) Data

Participants were part of a longitudinal study of
young adults. This sample started in 1995 (when par-
ticipants were 18–30 years old; Mage = 24.4 years,
SD = 3.7) with 637 participants who were largely
representative of the population of adult Germans.
The sample was reassessed 4 years later (return
rate = 76%). The longitudinal sample included 489
participants (N = 226 females).

To simplify the models we focus here on only
two variables: extraversion as an indicator for per-
sonality and closeness with/support by friends as
an indicator for relationship quality. Quality of
relationships was assessed at both occasions using
a social network inventory, where respondents
were asked to recall those persons who play an
important role in their lives. In the present
investigation, we reanalyzed the relevant data on
the felt closeness with friends. Participants named
on average 4.82 friends (SD = 4.22) and 5.62
friends (SD = 4.72) at the first and second
occasions, respectively. Closeness was measured
with the item: “How close do you feel to this
person?” (1 = very distant to 5 = very close). The
ratings were averaged across all friends. Extraver-
sion was assessed using the German version of
the NEO-FFI (Borkenau & Ostendorf, 1993). Inter-
nal consistencies at both measurement occasions
were .76 and .78, and the rank order stability was
r = .61.
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Description of the Sturaro et al. (2010) and
Asendorpf and van Aken (2003) Data

Participants were part of the Munich Longitudi-
nal Study on the Genesis of Individual Competen-
cies (Weinert & Schneider, 1999). This sample
started in 1984 (when participants were 3 to 4 years
old) with 230 children from the German city of
Munich. Participants were selected from a broad
range of neighborhoods to ensure representative-
ness. This study focuses on reassessments of the
sample at ages 12, 17, and 23. At age 12, 186 partic-
ipants were still part of the sample; at age 17 this
was true for 174 participants. Because the
Asendorpf and van Aken (2003) publication focused
on participants with complete data at both waves
of data collection, the present analyses focus on the
174 individuals with data at ages 12 and 17. At age
23, a total of 154 participants were still in the sam-
ple. For this study, analyses focus on a subset of
148 individuals who provided personality self-
ratings.

Measures selected for this study were taken in
correspondence with the cited articles. At age 12,
support by friends was measured as support from
classroom friends. For the category of classroom
friends, an average of 3.0 individuals was listed.
For each of these individuals, participants rated the
supportiveness of the relationship in terms of
instrumental help, intimacy, esteem enhancement,
and reliability (three items each; items of the first
three scales were adapted from the NRI; Furman &
Buhrmester, 1985). Ratings were averaged across all
friends. At age 17, the same scales were repeated
only for the best friend in class. In both years, if
participants did not have any classroom friends,
they received a score of 1 for support (the lowest
possible). At age 23, support was measured using
an ego-centered Social Network Questionnaire.
Like the Sturaro et al. (2010) article, we focus here
on the average quality with same-sex peers because
this measure was deemed most comparable with
the peer measures at ages 12 and 17.

Extraversion at ages 12 and 17 was assessed with
bipolar adjective pairs (Ostendorf, 1990; sample
item: unsociable vs. outgoing). At age 23, extraver-
sion was assessed with a scale from the NEO-FFI
(Borkenau & Ostendorf, 1993; sample item: “I like
to have a lot of people around me”). As reported
by Sturaro et al. (2010), in a separate sample of 641
college students, the Ostendorf Scale for Extraver-
sion and the NEO-FFI Scale for Extraversion are
correlated almost perfectly after controlling for the
unreliability of the scales (r = .92).

Analytic Strategy

We used Mplus to analyze the model displayed
in Figure 3. Two crucial elements when applying
Bayesian statistics have to be discussed in the Ana-
lytic Strategy section of a Bayesian article: (a) which
priors were used and where did these priors came
from? And (b) how was convergence assessed (see
also online Appendix S1)? Concerning the latter, we
used the Gelman–Rubin criterion (for more infor-
mation, see Gelman et al., 2004) to monitor conver-
gence, which is the default setting of Mplus.
However, as recommended by Hox, van de Schoot,
and Matthijsse (2012), we set the cutoff value stric-
ter (i.e., bconvergence = .01) than the default value
of .05. We also specified a minimum number of iter-
ations by using biterations = (10,000), we requested
multiple chains of the Gibbs sampler by using
chains = 8, and we requested starting values based
on the ML estimates by using stvalues = ml. More-
over, we inspected all the trace plots manually to
check whether all chains converged to the same tar-
get distribution and whether all iterations used for
obtaining the posterior were based on stable chains.

Concerning the specification of the priors, we
developed two scenarios. In the first scenario, we
only focus on those data sets with similar age
groups. Therefore, we first reanalyze the data of
Neyer and Asendorpf (2001) without using prior
knowledge. Thereafter, we reanalyze the data of
Sturaro et al. (2010) using prior information based
on the data of Neyer and Asendorpf; both data sets
contain young adults between 17 and 30 years of
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Extraversion

Hypothesized to 
be >0

Hypothesized to 
be 0

T2
Extraversion

T1
Friends

T2
Friends
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Figure 3. Cross-lagged panel model where r1 is the correlation
between Extraversion measured at Wave 1 and Friends mea-
sured at Wave 1, and r2 is the autocorrelation between the resid-
uals of two variables at Wave 2, b1 and b2 are the stability paths,
and b3 and b4 are the cross-loadings. T1 and T2 refer to ages 12
and 17, respectively, for the Asendorpf and van Aken (2003)
data, but to ages 17 and 23, respectively, for the Sturaro, Denis-
sen, van Aken, and Asendorpf (2010) data.
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age. In the second scenario, we assume the relation
between personality and social relationships is inde-
pendent of age and we reanalyze the data of Stur-
aro et al. using prior information taken from Neyer
and Asendorpf and from Asendorpf and van Aken
(2003). In this second scenario we make a strong
assumption, namely, that the cross-lagged effects
for young adolescents are equal to the cross-lagged
effects of young adults. This assumption implicates
similar developmental trajectories across age
groups. We come back to these issues in the Discus-
sion section.

Scenario 1

Based on previous research findings, Asendorpf
and Wilpers (1998) hypothesized the model shown
in Figure 3. As this study described the first
attempt to study these variables over time, Ase-
ndorpf and Wilpers would probably have specified
(had they used Bayesian statistics) an uninformative
prior distribution reflecting no prior knowledge
(see also Figures 1a and 1b). Neyer and Asendorpf
(2001) gathered a general sample from the German
population and analyzed their data. As Neyer and
Asendorpf used different test–retest intervals as
compared to Asendorpf and Wilpers, we cannot
use the results from Asendorpf and Wilpers as
prior specifications. So, when reanalyzing Neyer
and Asendorpf, we will use the default settings of
Mplus, that is, noninformative prior distributions;
see Figure 1b and see Model 1 (Neyer & Asendorpf,
2001 | Uninf. Prior) in the second column of
Table 3. Note that “|” means condition on, so the
statement is read as the results of the Neyer and

Asendorpf (2001) data condition on an uninformative
prior. Sturaro et al. (2010) continued working on
the cross-lagged panel model. In the third column
of Table 3, the results of Model 2 (Sturaro et al.,
2010 | Uninf. prior) are shown when using nonin-
formative prior distribution (which does not take
the previous results obtained by Neyer and Asen-
dorpf into account). What if we used our updating
procedure and use the information obtained in
Model 1 as the starting point for our current analy-
sis? That is, for Model 3 (Sturaro et al., 2010 | Neyer
& Asendorpf, 2001) we used for the regression coeffi-
cients the posterior means and standard deviations
from Model 1 as prior specifications for Model 3a.
Noninformative priors were used for residual vari-
ances and for the covariances. This was done
because the residuals pick up omitted variables,
which almost by definition are unknown. Then, we
would have a hard time knowing what their prior
relation would be to the outcome or to other vari-
ables in model. This way the prior for the
subsequent study is a rough approximation to the
posterior from the previous study.

As pointed out by one of the reviewers, there is
an assumption being made that the multiparameter
posterior from a previous study can be accurately
represented by independent marginal distributions
on each parameter. But the posterior distribution
captures correlations between parameters, and in
regression models the coefficients can be quite
strongly correlated (depending on the data). If one
would have strong prior believes on the correla-
tions among parameters, this could be represented
in a Bayesian hierarchical model. However, because
these correlations are data specific in regression,

Table 3
Posterior Results for Scenario 1

Parameters

Model 1: Neyer & Asendorpf (2001)
data without prior knowledge

Model 2: Sturaro et al. (2010) data
without prior knowledge

Model 3: Sturaro et al. (2010) data
with priors based on Model 1

Estimate (SD) 95% PPI Estimate (SD) 95% PPI Estimate (SD) 95% PPI

b1 0.605 (0.037) 0.532–0.676 0.291 (0.063) 0.169–0.424 0.333 (0.060) 0.228–0.449
b2 0.293 (0.047) 0.199–0.386 0.157 (0.103) �0.042–0.364 0.168 (0.092) �0.010–0.352
b3 0.131 (0.046) 0.043–0.222 0.029 (0.079) �0.132–0.180 0.044 (0.074) �0.103–0.186
b4 �0.026 (0.039) �0.100–0.051 0.303 (0.081) 0.144–0.462 0.247 (0.075) 0.101–0.393

Model fit Lower CI Upper CI Lower CI Upper CI Lower CI Upper CI

95% CI for difference between observed
and replicated chi-square values

�14.398 16.188 �12.595 17.263 �12.735 17.298

ppp value .534 .453 .473

Note. See Figure 3 for the model being estimated and the interpretation of the parameters. Posterior SD = standard deviation;
PPI = posterior probability interval; CI = confidence interval; ppp value = posterior predictive p value.
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and data and model specific in SEM (see Kaplan &
Wenger, 1993), it is unlikely that we would be able
to elicit such priors. Therefore, the easiest approach
is to specify independent marginal priors and let
the posterior capture the empirical correlations.

Scenario 2

Assuming the cross-lagged panel effects to be
not age dependent, Asendorpf and van Aken (2003)
could have used the results from Neyer and Ase-
ndorpf (2001) as the starting point for their own
analyses, which in turn could have been the start-
ing point for Sturaro et al. (2010). In the second col-
umn of Table 4, the results, without assuming prior
knowledge, of Asendorpf and van Aken are dis-
played, that is, Model 4 (Asendorpf & van Aken,
2003 | Uninf. prior). In the third column, that is,
Model 5 (Asendorpf & van Aken, 2003 | Neyer & Asen-
dorpf, 2001), the data of Asendorpf and van Aken
were updated using prior information taken from
Model 1. In the last step, that is, Model 6 (Sturaro
et al., 2010 | Asendorpf & van Aken, 2003 | Neyer &
Asendorpf, 2001), the data of Sturaro et al. were
updated using the prior information taken from
Model 5. In sum, the models tested are as follows:

Uninformative priors

Neyer & Asendorpf, 2001 | Uninf. prior
Asendorpf & van Aken, 2003 | Uninf. prior
Sturaro et al., 2010 | Uninf. prior

Scenario 1: Age specificity when updating knowledge
Sturaro et al., 2010 | Neyer & Asendorpf, 2001

Scenario 2: Age invariance when updating knowledge
Asendorpf & van Aken, 2003 | Neyer & Asen-
dorpf, 2001
Sturaro et al., 2010 | Asendorpf & van Aken,
2003 | Neyer & Asendorpf, 2001

Model Fit

When using SEM models to analyze the research
questions, one is not interested in a single hypothe-
sis test, but instead in the evaluation of the entire
model. Model fit in the Bayesian context relates to
assessing the predictive accuracy of a model, and is
referred to as posterior predictive checking (Gelman
et al., 2004). The general idea behind posterior pre-
dictive checking is that there should be little, if any,
discrepancy between data generated by the model
and the actual data itself. Any deviation between
the data generated by the model and the actual
data suggests possible model misspecification. In
essence, posterior predictive checking is a method
for assessing the specification quality of the model
from the viewpoint of predictive accuracy. A com-
plete discussion of Bayesian model evaluation is
beyond the scope of this study; we refer the inter-
ested reader to Kaplan and Depaoli (2012, 2013).

One approach to quantifying model fit is to
compute Bayesian posterior predictive p values (ppp
value). The model test statistic, the chi-square
value, is calculated on the basis of the data is com-
pared to the same test statistic, but then defined for
the simulated data. Then, the ppp value is defined
as the proportion of chi-square values obtained in

Table 4
Posterior Results for Scenario 2

Parameters

Model 4: Asendorpf & van Aken (2003)
data without prior

knowledge

Model 5: Asendorpf & van Aken (2003)
data with priors based

on Model 1

Model 6: Sturaro et al. (2010)
data with priors based on

Model 5

Estimate (SD) 95% PPI Estimate (SD) 95% PPI Estimate (SD) 95% PPI

b1 0.512 (0.069) 0.376–0.649 0.537 (0.059) 0.424–0.654 0.314 (0.061) 0.197–0.441
b2 0.115 (0.083) �0.049–0.277 0.139 (0.077) �0.011–0.288 0.144 (0.096) �0.039–0.336
b3 0.217 (0.106) 0.006–0.426 0.195 (0.094) 0.007–0.380 0.044 (0.076) �0.109–0.191
b4 0.072 (0.055) �0.036–0.179 0.065 (0.052) �0.040–0.168 0.270 (0.075) 0.121–0.418

Model fit Lower CI Upper CI Lower CI Upper CI Lower CI Upper CI

95% CI for difference between observed
and replicated chi-square values

�16.253 17.102 �16.041 15.625 �12.712 16.991

ppp value .515 .517 .473

Note. See Figure 3 for the model being estimated and the interpretation of the parameters. Posterior SD = standard deviation;
PPI = posterior probability interval; CI = confidence interval; ppp value = posterior predictive p value.
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the simulated data that exceed that of the actual
data. The ppp values around .50 indicate a well-
fitting model.

Posterior Results

Scenario 1

In Table 3 the posterior results are displayed for
the first scenario. Consider the posterior regression
coefficient for the stability path of Friends (b2),
which is estimated as .293 in Model 1; Models 2
and 3 represent different ways of updating this
knowledge. Model 2 ignores the results by Neyer
and Asendorpf (2001) and achieves a stability path
of .157. Model 3, in contrast, bases the prior distri-
butions on the posterior results of Model 1 (Neyer
& Asendorpf, 2001 | Uninf. prior) and arrives at a
stability path of .168, which does not differ that
much from the original outcome. If we compare the
standard deviation of the stability path b2 of
Friends between Model 2 and Model 3 (Sturaro
et al., 2010 | Neyer & Asendorpf, 2001), we can
observe that the latter is more precise (decrease in
variance from .103 to .092). Consequently, the 95%
PPI changes from [�.042, .364] in Model 2 to
[�.010, .352] in Model 3. Thus, the width of the PPI
decreased and, after taking the knowledge gained
from Model 1 into account, we are more confident
about the results of the stability path of Friends.

The cross-lagged effect between Friends
T1 ? Extraversion T2 (b4) is estimated as �.026 in
Model 1 (Neyer & Asendorpf, 2001 | Uninf. prior),
but as .303 in Model 2 (Sturaro et al., 2010 | Uninf.
prior). When Model 1 is used as input for the prior
specification for the Sturaro et al. (2010) data,
Model 3 (Sturaro et al., 2010 | Neyer & Asendorpf,
2001), the coefficient is influenced by the prior, and
the coefficient becomes .247 again with a smaller
PPI. Furthermore, in both Models 2 and 3, the
cross-lagged effect between Extraversion
T1 ? Friends T2 (b3) in Model 3 appears not to be
significant.

Scenario 2

Concerning Scenario 2 the results of the updating
procedure are shown in Table 4. Compare Models
4 (Asendorpf & van Aken, 2003 | Uninf. prior) and
5 (Asendorpf & van Aken, 2003 | Neyer & Asen-
dorpf, 2001) where the data of Asendorpf and van
Aken (2003) were analyzed with noninformative
priors and priors based on Model 1, respectively.
Again, in Model 5 the PPIs decreased when com-

pared to Model 4 because of the use of subjective
priors. In Model 6 (Sturaro et al., 2010 | Asendorpf
& van Aken, 2003 | Neyer & Asendorpf, 2001), the
data of Sturaro et al. (2010) were analyzed using
priors based on Model 5; consequently, the poster-
ior results of Model 6 are different from the results
of Sturaro et al. in Model 2 where no prior knowl-
edge was assumed.

Discussion of Empirical Example

Inspection of the main parameters, the cross-
lagged effects, b3 and b4, indicate that there are hardly
any differences between Scenarios 1 and 2. Appar-
ently, the results of Sturaro et al. (2010) are robust
irrespective of the specific updating procedure. How-
ever, there are differences between the updated out-
comes and the original results. That is, Models 3 and
6 have smaller standard deviations and narrower
PPIs compared to Model 2. Thus, using prior knowl-
edge in the analyses led to more certainty about the
outcomes of the analyses and we can be more confi-
dent in the conclusions, namely, that Sturaro et al.
found opposite effects to Neyer and Asendorpf
(2001). This should be reassuring for those who might
think that Bayesian analysis is too conservative when
it comes to revising previous knowledge. Therefore,
the bottom line remains that effects occurring
between ages 17 and 23 are different from those
found when ages 18–30 were used as range. The
advantage of using priors is that the confidence inter-
vals became smaller such that the effect of different
ages (17–23 vs. 18–30) on the cross-lagged results can
be more trusted than before.

Because developmental mechanisms may vary
over time, any (reciprocal) effects found between
ages 12 and 17 are not necessarily found between
ages 17 and 23. Although the Sturaro et al. (2010)
study was originally designed as a replication of
the Asendorpf and van Aken (2003) study, results
turned out to be more consistent with the alterna-
tive explanation of the social investment theory of
Roberts et al. (2005), namely, that between ages 17
and 23 there might be more change in personality
because of significant changes in social roles. In
spite of the fact that we have chosen for the exact
replication of the Asendorpf and van Aken study
(because this was the stated goal of the Sturaro
et al., 2010, study), developmental researchers of
course should not blindly assume that previous
research findings from different age periods can be
used to derive priors. After all, development is
often multifaceted and complex and looking only
for regularity might make the discovery of interest-
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ing discontinuities more difficult. In such cases,
however, this sense of indetermination needs to be
acknowledged explicitly and translated into prior
distributions that are flatter than would be typical
in research fields in which time periods are more
interchangeable.

Discussion

One might wonder when it is useful to use Bayes-
ian methods instead of using the default approach.
Indeed, there are circumstances in which both
methods produce very similar results, but there are
also situation that both methods should produce
different outcomes. Advantages of Bayesian statis-
tics over frequentist statistics are well documented
in the literature (Jaynes, 2003; Kaplan & Depaoli,
2012, 2013; Kruschke, 2011a, 2011b; Lee & Wagen-
makers, 2005; Van de Schoot, Verhoeven, & Hoijt-
ink, 2012; Wagenmakers, 2007) and we will just
highlight some of those advantages here.

Theoretical Advantages

When the sample size is large and all parameters
are normally distributed, the results between ML
estimation and Bayesian estimation are not likely to
produce numerically different outcomes. However,
as we discussed in our study, there are some theo-
retical differences.

1. The interpretation of the results is very differ-
ent; for example, see our discussion on confi-
dence intervals. We believe that Bayesian
results are more intuitive because the focus of
Bayesian estimation is on predictive accuracy
rather than “up or down” significance testing.
Also, the Bayesian framework eliminates
many of the contradictions associated with
conventional hypothesis testing (e.g., Van de
Schoot et al., 2011).

2. The Bayesian framework offers a more direct
expression of uncertainty, including complete
ignorance. A major difference between frequ-
entist and Bayesian methods is that only the
latter can incorporate background knowledge
(or lack thereof) into the analyses by means of
the prior distribution. In our study we have
provided several examples on how priors can
be specified and we demonstrated how the
priors might influence the results.

3. Updating knowledge: Another important argu-
ment for using Bayesian statistics is that it

allows updating knowledge instead of testing
a null hypothesis over and over again. One
important point is that having to specify
priors forces one to better reflect on the simi-
larities and differences between previous stud-
ies and one’s own study, for example, in
terms of age groups and retest interval (not
only in terms of length but also in terms of
developmental processes). Moreover, the
Bayesian paradigm sometimes leads to repli-
cating others’ conclusions or even strengthen-
ing them (i.e., in our case), but sometimes
leads to different or even opposite conclu-
sions. We believe this is what science is all
about: updating one’s knowledge.

Practical Advantages

In addition to the theoretical advantages, there
are also many practical advantages for using Bayes-
ian methods. We will discuss some of them.

1. Eliminating the worry about small sample sizes—
albeit with possible sensitivity to priors (as it
should be). Lee and Song (2004) showed in a
simulation study that with ML estimation the
sample size should be at least 4 or 5 times the
number of parameters, but when Bayes was
used this ratio decreased to 2 or 3 times the
number of parameters. Also, Hox et al. (2012)
showed that in multilevel designs at least 50
clusters are needed on the between level
when ML estimation is used, but only 20 for
Bayes. In both studies default prior settings
were used and the gain in sample size reduc-
tion is even larger when subjective priors are
specified. It should be noted that the smaller
the sample size, the bigger the influence of
the prior specification and the more can be
gained from specifying subjective priors.

2. When the sample size is small, it is often hard
to attain statistical significant or meaningful
results (e.g., Button, et al., 2013). In a cumula-
tive series of studies where coefficients fall
just below significance, then if all results show
a trend in the same direction, Bayesian meth-
ods would produce a (slowly) increasing con-
fidence regarding the coefficients—more so
than frequentist methods.

3. Handling of non-normal parameters: If parame-
ters are not normally distributed, Bayesian
methods provide more accurate results as
they can deal with asymmetric distributions.
An important example is the indirect effect of
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a mediation analysis, which is a multiplication
of two regression coefficients and therefore
always skewed. Therefore, the standard errors
and the confidence interval computed with
the classical Baron and Kenny method or the
Sobel test for mediation analyses are always
biased (see Zhao, Lynch, & Chen, 2010, for an
in-depth discussion). The same arguments
hold for moderation analyses where an inter-
action variable is computed to represent the
moderation effect. Alternatives are bootstrap-
ping, or Bayesian statistics (see Yuan & MacK-
innon, 2009). The reason that Bayes
outperforms frequentist methods is that the
Bayesian method does not assume or require
normal distributions underlying the parame-
ters of a model.

4. Unlikely results: Using Bayesian statistics it is
possible to guard against overinterpreting
highly unlikely results. For example, in a
study in which one is studying something
very unlikely (e.g., extrasensory perception;
see the discussion in Wagenmakers, Wetzels,
Borsboom, & van der Maas, 2011), one can
specify the priors accordingly (i.e., coeffi-
cient = 0, with high precision). This makes it
less likely that a spurious effect is identified.
A frequentist study is less specific in this
regard. Another example is using small vari-
ance priors for cross-loadings in confirmatory
factor analyses or in testing for measurement
invariance (see Muth�en & Asparouhov, 2012).
The opposite might also be wanted, consider
a study in which one is studying something
very likely (e.g., intelligence predicting school
achievement). The Bayesian method would
now be more conservative when it comes to
refuting the association.

5. Elimination of inadmissible parameters: With ML
estimation it often happens that parameters are
estimated with implausible values, for exam-
ple, negative residual variances or correlations
larger than 1. Because of the shape of the prior
distribution for variances/covariances, such
inadmissible parameters cannot occur. It
should be noted, however, that often a negative
residual variance is due to overfitting the
model and Bayesian estimation does not solve
this issue. Bayesian statistics does not provide
a “golden solution” to all of one’s modeling
issues.

In general, we do not want to make the argu-
ment for using Bayesian statistics because of its

“superiority” but rather one of epistemology. That
is, following De Finetti (1974a), we have to come to
grips as to what probability is: long-run frequency
of a particular result or the uncertainty of our
knowledge? This epistemological issue is more fun-
damental than the divergence of results between the
two approaches, which is often less than dramatic.

Limitations and Future Research

Of course, the Bayesian paradigm is not without
assumptions and limitations. The most often heard
critique is the influence of the prior specification,
which might be chosen because of opportune rea-
sons. This could open the door to adjusting results
to one’s hypotheses by assuming priors consistent
with these hypotheses. However, our results might
somewhat assuage this critique: The Sturaro et al.
(2010) results were upheld even when incorporating
priors that assumed an inverse pattern of results.
Nevertheless, it is absolutely necessary for a serious
article based on Bayesian analysis to be transparent
with regard to which priors were used and why.
Reviewers and editors should require this informa-
tion.

Another discussion among Bayesian statisticians
is which prior distribution to use. So far, we only
discussed the uniform distribution and the normal
distribution. Many more distributions are available
as an alternative for the normal distribution, for
example, a t distribution with heavier tails to deal
with outliers (only available in WinBUGS). It might
be difficult for nonstatisticians to choose among all
these, sometimes exotic, distributions. The default
distributions available in Amos/Mplus are suitable
for most models. If an analyst requires a nonstan-
dard or unusual distributions, be aware that most
distributions are not (yet) available in Amos/Mplus
and it might be necessary to switch to other soft-
ware, such as WinBUGS or programs available in
R. Another critique is that in Bayesian analysis we
assume that every parameter has a distribution in
the population, even (co)variances. Frequentist stat-
isticians simply do not agree on this assumption.
They assume that in the population there is only
one true fixed parameter value. This discussion is
not the scope of our study and we would like to
refer interested readers to the philosophical litera-
ture—particularly, Howson and Urbach (2006)–for
more information.

A practical disadvantage might be that computa-
tional time increases because iterative sampling
techniques are used. Fortunately, computer proces-
sors are becoming more efficient as well as cheaper
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to produce. Accordingly, the availability of ade-
quate hardware to run complex models is becoming
less of a bottleneck, at least in resource-rich coun-
tries. On the other hand, Bayesian analysis is able
to handle highly complex models efficiently when
frequentist approaches to estimation (i.e., ML) often
fail (e.g., McArdle, Grimm, Hamagami, Bowles, &
Meredith, 2009). This is especially the case for mod-
els with categorical data or random effect where
Bayes might even be faster than the default numeric
integration procedures most often used.

Guidelines

There are a few guidelines one should follow
when reporting the analytic strategy and posterior
results in a manuscript:

1. Always make clear which priors were used in
the analyses so that the results can be repli-
cated. This holds for all the parameters in the
model.

a. If the default settings are used, it is neces-
sary to refer to an article/manual where
these defaults are specified.

b. If subjective/informative priors are used, a
subsection has to be included in the Analyti-
cal Strategy section where the priors are
specified and it is should be explicitly stated
where they come from. Tables could be
used if many different priors are used. If
multiple prior specifications are used, as we
did in all our examples, include information
about the sensitivity analysis.

2. As convergence might be an issue in a Bayesian
analysis (see online Appendix S1), and because
there are not many convergence indices to rely
on, information should be added about conver-
gence, for example, by providing (some of) the
trace plots as supplementary materials.

In conclusion, we believe that Bayesian statistical
methods are uniquely suited to create cumulative
knowledge. Because the availability of proprietary
and free software is making it increasingly easy to
implement Bayesian statistical methods, we encour-
age developmental researchers to consider applying
them in their research.
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